

CORDIC Architectures: A Review

Anu H1, D Mahesh Kumar2 and D Jayadevappa3

1Asst. Prof., Dept. of E&IE, JSS Academy of Technical Education, Bengaluru
shamaiah.anu@gmail.com

2Associate Prof., Dept. of E&IE, JSS Academy of Technical Education, Bengaluru
dmkjssate@gmail.com

3Prof., Dept. of E&IE, JSS Academy of Technical Education, Bengaluru
devappa22@gmail.com

Abstract—From few decades Coordinate Rotation for Digital Computers (CORDIC)
algorithm has received attention from academic and industry because of its applications in
DSP, biomedical processing, neural networks, MIMO and many more. It is a repetitive
algorithm, which involves shift and addition operations, for hardware understanding of
basic uncomplicated functions. CORDIC is used as a fundamental block for building a
variety of single chip solutions; aspects which are critical and need of consideration are high
speed, low power and area, to achieve realistic on the whole performance. In this paper we
will discuss about Parallel and Serial implementation, folded and unfolded implementation
and IQ-Math and FP-Math CORDIC architectures on FPGA. In-depth evaluation of
different architectures are presented, which makes available a first order information to
designers who looks out for either advance development of performance or choice of
rotational CORDIC for a precise function.

Index Terms— CORDIC Algorithm, FPGA, Serial and Parallel Architecture, Rolling.

I. INTRODUCTION

The CORDIC was introduced by Jack E. Volder [1] as a computing method, particularly for use in real-time
digital computer where the mainstream of computations is trigonometric relations of navigation equations of
coordinate transformation. It works on the principle of shift and adds to perform many functions of
trigonometric, vector rotations, hyperbolic, logarithmic functions. There are two modes of operation in
CORDIC, they are rotation and vector mode. It is mainly used in communication applications for
implementation of universal modulator and demodulator. It is also used extensively in filtering, digital signal
processing, matrix algebra, image processing etc.
Current applications need accurate and versatile computing requirements. Therefore CORDIC architecture
ought to have the capability of delicate and versatile computing like alternative digital systems. CORDIC
design cannot be achieved by many digit systems thanks to timing of the system and also the machine load
the system required. An architectural design to meet the requirements like CORDIC architecture’s has ability
to supply accurate results and to work collaterally while it is accomplished on FPGA.
With the quick progress of FPGA performance, its appliance areas will be supplementary prolonged, its
description includes low price, versatile programming, micro power, straight forward to transplant, etc. it is
acceptable for understanding of CORDIC algorithm system structure in FPGA, the system is additional

Grenze ID: 01.GIJCTE.3.4.62
© Grenze Scientific Society, 2017

Grenze International Journal of Computer Theory and Engineering , Special issue

419

suitable, the merchandise style cycle is greatly summarized. The traditional CORDIC algorithm cannot
envelop the entire method cycle, additional repetitious times and slow convergence speed.
The CORDIC provides the occasion to determine all the required functions in a fairly simple way, lacking
any hardware multiplier. The operation implemented in the algorithm is addition, subtraction, bit shift and
lookup table. Because of the straightforwardness of the involved operations the CORDIC algorithm [2], [3],
[4] is well matched for VLSI realization also.

A. CORDIC Algorithm

The formula operates in one in every of the 2 modes: Rotation or vectoring. The two modes decide the set of
functions may be computed victimization using the algorithm. In Rotation mode, the x and y components of
the beginning vector are input plus an angle of rotation. The hardware iteratively computes x and y parts of
the vector ones it’s been turned by the required angel of rotation. In Vectoring mode, x and y components are
input, the magnitude and angle of the original vector are computed. This can be accomplished by rotating the
input vector till it’s aligned with the coordinate axis. By recording the angle of rotation to realize this
alignment, we tend to get the angle of the unique vector. Once the formulae is complete, x-
component of the vector is adequate the magnitude of the beginning vector.

(1)
Where x0 and y0 represent the input vector associated at the origin with magnitude R0 and angle θ0:

(2)
A new angle of rotation αi is decided such that

(3)

Figure 1. Illustration of CORDIC Algorithm

Figure 2. Step I in CORDIC Algorithm

420

Figure 2 shows what each step in the CORDIC algorithm looks like. At each step, a decision is made whether
to rotate the vector by +αi or - αi. The expression for the rotated vector in the (i+1)th step is,

 (5)
When applying the restriction in eqn. 3 the shifting and adding becomes evident.

 (6)

This shifted price is then more (or subtracted) to the present price of the part. Volder referred this as
operation cross-addition. It’s the cross-addition that permits the formula to be used effectively in digital
hardware. As illustrated in fig. 1 all rotation steps have an on a rise within the magnitude of the input vector
by an element of √1-2 -2t with every rotation. This error is introduced as a consequence of the algorithm’s
derivation from the Givens remodel that rotates a vector by such as angle.

 (7)
These terms can be rearranged by using the fundamental pure mathematics identity, the ordinal rotation may
be extended and a general definition derived as

 (8)
The total increase in magnitude are often specified as Kn = Пn √1+2 -2r. This increase should be accounted
while performing calculations using this algorithm. The CORDIC design [5], [6] incorporates three
accumulator registers. The X and Y registers hold the current x and y parts of the vector because it is being
rotated. The angle accumulator (Z) holds the entire rotation quantity completed at the core. The arctangent
terms are often stored in a small lookup table. When this is accomplished, only an addition or subtraction is
needed to work out the next value in the Z register, since d = ±1.
Abubeker et al. [7] discusses about parallel and serial CORIC architecture. Parallel architecture is
implemented which contains of two shift register, a standard register, four adder/subtractions, lookup table
and control unit. As shown in fig 3. Serial architecture is implemented with a bit serial arithmetic logic, along
with one-bit adders to execute the CORDIC algorithm. This type of architecture requires very less FPGA
resources, but will require more time to execute as shown in figure 4.

Figure 3. Control unit I Figure 4. Control unit II

421

In Parallel architecture of CORDIC algorithm, it will take 32 clock cycles to complete. In theoretical
maximum clock frequency of 56.507 MHz, the unit will take 17.697 ns to compute the ultimate value. In
serial CORDIC system using ‘n’ iterations with a word size of w bits, the total execution time of the unit will
be w*n+1 clock cycles. Every iteration will require ‘w’ cycles to complete because the values are passed
serially through the adders, and n total repetitions are completed after the algorithm finishes. The added clock
cycles are moderately offset by an increase in clock frequency.

TABLE I. UTILIZATION VALUES OF SERIAL AND PARALLEL CORDIC

From the graph it is obvious that parallel structure needs a lot of devices than serial CORDIC structure. So
serial CORDIC is chosen in applications where FPGA resources [8] are less utilized as compared to parallel
CORDIC. For massive applications where FPGA resources are limited, the serial CORDIC unit offers several
advantages over the parallel CORDIC unit. By operating solely on single bits in a serial fashion, the
complication of the shift registers is reduced significantly. The size of the adders utilized in the design is also
condensed since they only need to handle one bit at a time. Precision and accuracy are not sacrificed to
achieve the reduction in resource utilization .On the other hand the added execution time may avoid this
design from getting used in additional time-sensitive applications. For those, the parallel design or a quicker
table-based approach would be suited.

Figure 5. Device utilization summary

Masram et al. [9] discusses about folded word serial and unfolded parallel word design based on CORDIC
architecture for hardware realization. In folded word serial architecture shift and add rule is applied, as shown
in fig 6, each component consist of a MUX, a register to stock up up the data and an adder-subtractor
component. 16 bit of data is given to MUX using 2:1 MUX and output is stored in register. The stored value
of register and shift value of adder-subtractor is given as input to it and output is given out as subsequently
iteration which is employed as one of the input to MUX. The FSM is utilized to keep track of shifting
distances and the ROM addresses. Both adder-subtractor and shift register are employed in n time shared
basis. Shifters ought to alter the shift distance with the no. of repetitions necessary for fan in and hence
reduces the speed.

422

Un-folded architecture is used for designing of word-parallel architectures by making use of word serial
architecture to increase the throughput or decrease the power consumption of the realization. The iteration
method is unfolded for n dispensation elements performing the same iteration. A straight application of the
unfolding conversion is to design parallel processing architecture from serial processing architecture, as
shown in fig 7. In early stage the values are given to the first stage then output from first stage are inputs of
the next stage and so on. The n numbers of repetitions are carried in itself. So shifters are not being changed.
It eliminates the usage of ROM because it stores the angle value; in this structural design it is hard-wired.
This reduces the area and the need for register is eliminated by applying the values directly. Pre-computed
values are also given directly to the adder-subtractor unit.
Different parameters like latency, speed, throughput output and power using Xpower analyzer, is analyzed by
collecting the data from simulator database.
The performance investigation of both the designs using CORDIC architecture is carried out. CMOS
technologies used in unfolded architecture have higher speed and low power dissipation. Analysis shows that
implementation of least number of cycle time n=7.5 reduces not only size but also conjointly improves single
byte system performance fairly than using two byte operation on the same chip.
Bureu et al. discusses about different number format to implement CORDIC algorithm. Countless CORDIC
architecture have been developed for using in FPGA [10], [11], [12] CORDIC architecture is to be enforced
by using “IQ-Math” number system that Texas C28xDSP family firm runs or by means of the IEEE 754
“Floating-Point Numbers” to realize the requirement. The initial stage of dealing out the CORDIC Algorithm
on FPGA is to establish the number format to be used by the system.

Figure 6. Serial processing unit 1 Figure 7. Parallel processing unit 2

TABLE II. SPECIFICATIONS OF THE CORDIC

423

Computation of complicated mathematical functions such as CORDIC typically usually requires a bigger
range of numbers. It is favored to use floating-point numbers attributable to their vibrant representation.
Although they have many benefits, they work terribly slowly than ones in fixed point number. They occupy
comparatively larger hardware resources of FPGA.

TABLE III. IEEE STANDARDS DETAILS

According to the results tabulated within the table higher than implementation of a CORDIC algorithm on
FPGA using Floating-point number format has produced more delicate results than IQ-Math number format.
With the study of IQ-Math, process accuracy is 2.3842E-007 whereas in the study of IEEE-754, process
accuracy is 1.4E-45.
Importance of the number formats involves the forefront when algorithms like CORDIC including advance
mathematical are being enforced.

Fig 8, is the flow chart for IQ math number format used to implement CORDIC algorithm on FPGA

424

II. CONCLUSION

Serial CORDIC architecture is preferred and has more advantages than parallel CORDIC architecture in
FPGA. Execution of a CORDIC based processor on FPGA gives us authoritative mechanism of
implementing complicated computations on a podium that has a lot of property and suppleness at a
comparatively lesser cost. Masram’s CORDIC algorithm is implemented on FPGA based on two different
platforms, i.e. folded serial design and unfolded parallel design. From the results obtained it is clear that
unfolded parallel deign has less latency, occupies less space, power consumed by logical elements are less
and has an operating frequency of 42.15 MHZ. Also, FP-CORDIC and IQ-CORDIC architectures have been
compared supported by implementation time, method accurateness and hardware performance criteria on
FPGA.

REFERENCES
[1] J. Volder, "The CORDIC computing technique, “IRE Trans. Electronic Computers, Vol. EC-8, pp. 330-334, Sept.

1959.
[2] S. Sahin, S. Dikmee, A. Kavak, "Which Number Format to Use for Baseband Wimax Modem Implementation on an

FPGA ",Communication and Applications Conference, SIU, pp. 1-4,2008
[3] M. Wahab and D. Puckey, "FPGA-Based DSP Systems," Abindon EE & CS books, 2nd ed. , W. R. Moore and W.

Luk, 1994.
[4] R. Andraka, "A Survey of CORDIC Algorithms for FPGA Based Computers," ACM 0-89791-978-5/98/01, pp. 191-

200, 1998.
[5] A. Sahin, A. Kavak, Y. Becerikli, H. E. Demiray, "Implementation of floating point arithmetic using an FPGA,"

Mathematical Methods in Engineering, pp. 445-453, 2007.
[6] M. A. Avuslu, C. Karakuzu, S. Sahin, M. Yakut, "Neural network training based on FPGA with floating point

number format and it's perfonnance," Neural Comput & Applic, pp. 195-202,2011.
[7] Abubeker K. M, Sabana Backer and Abey Mathew Varghes, “Serial and Parallel Implementation of CORDIC

Architecture: A Comparative Approach”, 2013.
[8] Keshab K.Parhi ,"VLSI Digital Signal Processing systems "Willey Student edition "University of Minnesota.
[9] B. Y .Masram, P. T.Karule, “High Performance Analysis of a CORDIC Architectures based on FPGA: A

comparative approach”, 2014.
[10] Mehmet Ali AL Tuncu,Suhap Sahin, “FPGA Based Implementation of CORDIC using different number format”,

2013
[11] J. Walther, "A unified algorithm for elementary functions," Proc. AFIPS Spring Joint Computing Conf., vol. 38, pp.

379-385, 1971.
[12] Ray Andraka. “A survey of CORDIC algorithms for FPGA based computers”. Proceedings of the 1998

ACM/SIGDA sixth International symposium on FPGA, pp 192-200, New York, NY, USA, 1998. ACM Press.

